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In an orthomodular lattice (abbreviated OML) L, a Sasaki projection is a map- 
ping a ~ ~0.~(a) = x ^ (x ~ v a) from L to L, where xeL. We study compositions of 
finite numbers of Sasaki projections and of the same Sasaki projections composed 
in inverse order. By using the Baer *-semigroup of all finite compositions of 
Sasaki projections, we establish a new characterization of kernels of congruences 
in OMLs and a generalization of the parallelogram law for dimension OMLs. 
Our results are also related to quantum measurements via Pool's definition of 
the change of the support of a state after a measurement. 

I N T R O D U C T I O N  

In  an o r thomodu la r  lattice (abbreviated O M L )  L, a very impor tan t  
role is played by  so-called Sasaki projections, i.e., mappings  a ~ ~x(a )=  
x ^ (x • v a) f rom L to L, where x ~ L .  

In this paper  we study composi t ions  o f  finite numbers  o f  Sasaki projec- 
t ions and o f  the same Sasaki projections composed  in inversed order. As is 
shown in the Appendix,  the set o f  all finite composi t ions  o f  Sasaki projec- 
t ions can be endowed with the structure o f  a Baer *-semigroup which coordi-  
natizes L. Invert ing the order  o f  a composi t ion o f  Sasaki projections 
corresponds  to taking the involution in the Baer *-semigroup. We will estab- 
lish some relations between Sasaki projections and their " involut ions"  which 
generalize the well-known paral lelogram law. Our  results enable us to char-  
acterize kernels o f  congruence  relations in OMLs ,  so-called o r thomodu la r  
ideals, as " involut ion-preserving" ideals. We show that  a composi t ion o f  
Sasaki projections and its involution applied to 1 are dimensionally equiva- 
lent whenever a dimension equivalence relation can be in t roduced in an 
O M L .  Our  results are also related to quan tum measurements  via Pool ' s  
definition o f  the change o f  the suppor t  o f  a state after a measurement.  

~Institut de Math~matiques et Informatique, Universit~ Lyon 1, France. 
2Mathematics Institute, Slovak Academy of Sciences, Bratislava, Czechoslovakia. 

1599 
0020-7748/92/0900-I 599506.50/0 �9 1992 Plenum Publishing Corporation 



1600 Chevalier and Pulmannovi 

For notations and basic notions concerning OMLs, the reader is 
referred to Kalmbach (1983), for foundations of quantum mechanics to 
Beltrametti and Cassinelli ( 1981) or Piron (1976), and for Baer *-semigroups 
and Baer *-rings to Foulis (1960) and Berberian (1972). 

1. GENERALITIES ON SASAKI P R O J E C T I O N S  

The concept of  Sasaki projection was introduced by Sasaki (1951) with 
the following motivation. One of  the most important properties of a Hilbert 
space H is expressed by the projection theorem: 

If N is a closed subspace of  H, then every element a of  H can be 
decomposed as a = al + a2 with a le  N and a2 E N I. 

This result can be restated in the language of  lattices as follows: 

Let L be the lattice of all closed subspaces of  a Hilbert space H and x 
be an element of  L. For  every atom a of L there exist two atoms al and 
a2 such that a<_al v a 2 with al ~ x  and a2<_x • 

Note that if a:~x and a:~x • then a~ and a2 are the respective orthogonal 
projections of  a on x. 

Now, if a is an element of  an OML then we have, for every element x 
of  L, a_< tpx(a)v tpx• and qgx(a)<x, q~x• • If  a is an atom of  L, 
then tpx(a) and tpx• are not necessarily atoms, but if L is an atomic O ML 
satisfying the exchange axiom (Kalmbach, 1983, w 10), then ~0x(a) is an atom 
for every atom a such that a ~ x  • Moreover, let PM be the orthogonal 
projection on the closed subspace M of  a Hilbert space H. For  every sub- 
space N, we have PM(N)=Mc~(MX+N)  and if N is closed, then 
PM(N) = M c~ (M L + N) = M ^ (M • v N) in the O ML of  all closed sub- 
spaces of H. Hence, PM(N)= qgM(N) and Sasaki projections are a good 
generalization of  orthogonal projections in a Hilbert space. They possess 
many other interesting properties and we recall a few of them. 

1. Characterization of  kernel of  congruence relations in OMLs. In an 
OML, a congruence relation is determined by its kernel, which is called an 
orthomodular ideal (or a p-ideal). Finch (1966) has proved: 

An ideal I of  an OML L is an orthomodular ideal if and only if a e l  
and beL  imply q~b(a)~L 

2. Construction, for every OML L, of  a Baer *-semigroup coordinatiz- 
ing L. Let L be an OML and SL = (tp,, o �9 �9 �9 o r Equipped with the 
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composition of mappings and the two following unary operations, 

(~0~, . . . . .  q~o,)* = q~o . . . . .  q,~, 

(~Pa, . . . . .  ~p~,)'=tpa with d = (~pa,, o . . . .  ~p,,(1)) • 

SL is a Baer *-semigroup and L is isomorphic to the OML of all closed 
projections of SL. Therefore, every OML can be considered as the OML of 
all closed projections of  a Baer *-semigroup. This fact plays a decisive role 
in several proofs of Section 3. 

More information about Baer *-semigroups can be found in the 
Appendix. 

3. Description of changes of  states caused by quantum measurements. 
In the quantum logic approach to quantum mechanics, the set of all proposi- 
tions associated with a physical system is supposed to form an orthomodular 
lattice (a quantum logic) L. According to Pool (1968a,b), to every proposi- 
tion p there corresponds a mapping f~p of the set S(L) of all states on L into 
itself, called an operation, and defined in the following way: if s is a state 
on L such that s(p) ~ O, and a measurement to determine the occurrence or 
nonoccurrence o fp  is performed, then f~p(S) is the resulting state in the case 
that the answer was affirmative. 

Recall that an element a~L is the support of the state s if a i b  is 
equivalent to s(b) = 0. The support of s, when it exists, is unique and will be 
denoted by supp(s). If  s has a support, then s satisfies the so-called Jauch- 
Piron property: s(x)=s(y)=0 implies s(x v y ) =  0. Conversely, if L is o-- 
complete and the state s is completely additive and satisfies the Jauch-Piron 
property, then s has a support (Kalmbach, 1986, Chapter 2, Theorem 20). 
Note that if in L every family of pairwise orthogonal elements is finite or 
denumerable, then each o--additive state is completely additive. Pool (1986b) 
introduces the following axiom in his definition of an event-state-operation 
structure: 

Let p be a proposition and s be a state such that s(p)~0. If  supp(s) 
and supp(~p(s)) exist, then supp(f~(s))= tpp(supp(p)). 

This axiom is satisfied in the classical case (all the propositions com- 
mute) and also in the usual Hilbert space formulation of quantum mechan- 
ics. In this formulation, to each physical system De is attached a Hilbert 
space H (generally infinite-dimensional, separable, and over the complex 
field), observables (or physical quantities) of SP are associated with self- 
adjoint operators of  H and states with von Neumann operators (i.e., linear, 
bounded, self-adjoint, positive, trace class operators of trace one). According 
to the spectral theorem for self-adjoint operators, every self-adjoint operator 
A determines a unique vector-valued measure PA and if A represents an 
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observable d ,  then the probability that the value of d ,  when the state of 
the system is represented by the von Neumann operator D,lies in the Borel 
set E is t r (DPA(E) ) .  The state of the system after a measurement is 
performed to determine if the value of d belongs to E is represented by 
P A ( E ) D P A ( E ) / t r ( D P A ( E ) )  if the state before the measurement was repre- 
sented by D and in case the answer was affirmative. In this formulation the 
physical proposition "the value of the observable d lies in the Borel set E" 
is in correspondence with the orthogonal projection PA(E)  and the quantum 
logic associated to the physical system 5 ~ is the OML L=Proj(H),  the set 
of all orthogonal projections of H. Note that a central question in this 
description is: does every self-adjoint operator represent an observable or, 
equivalently, is the quantum logic of 60 Proj(H) or only some substructure 
of Proj(H)? The mappings so: P~Prof (H)~t r (DP)~[0 ,  1], where D is a 
von Neumann operator, are states on the OML Proj(H) and, by the Gleason 
theorem, the converse is true if H is separable. In the Baer *-semigroup of 
all bounded operators of H we have the following equivalences: 

so(P)  =Ocr DP)  =Or D P = O c ~  P =  D ' P  c~ P < D '  ~ P_I_D" 

Hence, D" is the support of the state so.  
Now, as D is positive, we have D = X * X  for an operator X. Therefore, 

supp f~e(so) = ( P D  P)" = ( P X * X P ) "  = ( ( X P ) * X P ) "  

= ( X ' P ) "  = (D"P)" = q~p(D") = ~pp(supp so) 

which justifies the relation postulated by Pool for more general orthomodu- 
lar lattices. 

2. RELATIONS BETWEEN ~o~(b) AND ~ob(a) IN 
ORTHOMODULAR LATTICES 

Several theorems in the theory of OMLs are called the "parallelogram 
law for a binary relation R." They mean that ~0,(b) and ~0b(a) satisfy R and 
the terminology has its origin in affine geometry: with suitable notations 
and correspondences the parallelogram law may be interpreted as saying 
that the four "points" a, a A b, b, and a v b constitute a parallelogram. In 
this section, we recall this law for a position P' in general OMLs and the 
dimensional equivalence relation in dimension OMLs. 

Recall that two elements a and b of an orthocomplemented lattice are 
said to be in position P' if a-L^ b = a ^ b • 0. This relation was introduced 
by J. Dixmier in the lattice of all closed subspaces of a Hilbert space, and 
comparison of the following two characterizations of this relation is of 
interest: 
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1. Two elements a and b of an OML L are in position P' if and only 
if they are strongly perspective in any subOML containing them 
(Chevalier, 1983). 

2. Two elements a and b of the OML of all projections of a v o n  
Neumann algebra are in position P' if they are equivalent (in the 
sense of Murray and yon Neumann) in any subalgebra containing 
them (Brown, 1958). 

The following result shows that {%(b), %(a)} is the general form for a 
pair of elements of an OML in position P'. 

Proposition 1 (Chevalier, 1983). Let a and b be two elements of an 
OML L. The elements %(b) and %(a) are in position P', and if x and y are 
in position P', then x = q~x(y) and y = %(x). 

Note that, as position P' implies perspectivity and strong perspectivity, 
these two binary relations also satisfy the parallelogram law. 

The pair {%(b), %(a)} also allows us to characterize orthomodular 
ideals in OMLs: 

Proposition 2 (Chevalier, 1986). Let I be an ideal of an OML L. The 
following conditions are equivalent: 

(a) I is an orthomodular ideal. 
(b) The binary relation ~p,(b)eI is symmetric [i.e., for any a, b eL,  then 

%(b) e l  if and only q)b(a)el]. 

If  orthomodular lattices have a great interest in quantum logic, they 
also provide "the lattice theoretic background of the dimension theory of 
operator algebras" [to use the title of a paper by Loomis (1965)]. Recall the 
definition of a dimension lattice given in Loomis (1955): 

Let L be a complete OML, ~ be an equivalence relation on L. The pair 
(L, ~)  is called a dimension lattice if the following conditions are satisfied: 

(A) If  a ~ 0, then a = 0. 
(B) (Finite divisibility). If  a~Za2 and b~a~ v a2, then there exists an 

orthogonal decomposition of  b, b =bj v b2, such that bl ,-.a~ and b2,,~a2. 
(C) (Complete additivity). If  (ai)i~l and (bi)i~1 are two families of 

pairwise orthogonal elements such that a t~  bi for every i, then 

V ai ~ V bi 
ir i ~ l  

(D') If  a is perspective to b, then a,-, b. 
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The relation ~ is called a dimensional equivalence relation. 
[L. H. Loomis also introduces a condition (D) weaker than (D').] 

The next proposition means that every dimensional equivalence relation 
satisfies the parallelogram law. 

Proposition 3 (Loomis, 1955, Lemma 41). Let a and b be two elements 
of  a dimensional OML (L, ~).  Then ~,(b) ~ <Pb(a) holds. 

3. R E L A T I O N S  B E T W E E N  {0a 1 . . . . .  fp%(1) A N D  {0% . . . . .  {0~!(1 ) IN 
O R T H O M O D U L A R  LATTICES 

This section is devoted to the following question: What are the results 
of  the previous section admitting a generalization if %, o �9 �9 �9 o %.(1) and 
%,,o . . . .  ~o,,(l) replace %(b) and (pb(a)? Note that %(b)=q ,  dpb(1) and 
q,~(a) = q,~q,o(1). 

The following lemma is essential. 

Lemma 1. Let x ~ , . . . ,  x,  be n elements of  an OML L. The following 
equality is satisfied: 

cpx,... ~P.~JPx,... ~0x,(l)= q~x,... ~0x,,(1) 

Proof. Let S be a Baer *-semigroup coordinatizing L. Then we have 
in S 

(0xl . . .  (0xfPx,,.. r  X n . . . X l ) "  

= ( ( X n . . .  Xl)*X . . . .  Xl) u 

= ( x , . . .  x,)" 

= ~ 0 x , . . .  ~x,,(1) �9 

[We used the relation ( x ' x ) " =  x" satisfied in any Baer *-semigroup; see the 
Appendix.] 

Remark 1. As an immediate consequence of  Lemma I, we obtain that 
in any OML L, ~px,... ~0~,,(1)=0 if and only if ~x. �9 �9 �9 (ox,(l) =0.  

This remark enables us to obtain a good generalization of  Proposition 2. 

Proposition 4. Let I be an ideal of an OML L. The following statements 
are equivalent: 

(a) I is an orthonormal ideal. 
(b) For  any at . . . .  , a ,  eL,  ~oa, . .  �9 %.(1)~I  if and only if 

rp,,,... %,(1)~L 
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Proof ( a ) ~  (b): Follows easily from Remark 1 applied in L/L 
(b) =~ (a): Follows from Proposition 2. �9 

Remark 2. Let h be a central element of an OML L. As [0, h] is an 
orthomodular ideal, tpo,... r < h if and only if (0, , . . .  tp~, (1) < h. In par- 
ticular, if L is complete, then q~ , . . ,  q~a,(1) and (0a . . .  q~,,(1) have the same 
central cover. 

Recall that in a dimension OML (L, ~), the relation x<y  means that 
there exists z<y such that x~z .  

Lemma 2. Let (L, ~)  be a dimension OML. Then: 
(a) For any a, b~L we have tp~(b)<b 
(b) The relation ~ is transitive. 

Proof (a) By Proposition 2, tp~(b)..~tpb(a) and hence, qgb(a)<b 
implies ~pa(b) ~<b. 

(b)_ Suppose x ~<y and y < z. Then there exist y'  < y  and z '<  z such that 
x.-~y' and y ~z ' .  The orthomodular law implies that there exists y" in L such 
that y"• and y=y'  vy". From y~z '  we obtain that there exist z" and z" 
such that y'~z", y "~z ' ,  and z'=z" vz". Transitivity of ~ implies x~z",  
h e n c e x < z .  �9 

Theorem 1. (Generalization of the parallelogram law.) Let al,  �9 �9 �9 a, 
be n elements of a dimension OML (L, .~). Then we have the relation 

q,o,... ~0,.(1)-~0o,,... q,a,(1) 

Proof By using Lemma 2 n times we infer that 

~o~,... ~0,, q,~ . . .  ~,(1) <q,~ . . .  ~0o,(1) 

From this we obtain, by Lemma 1, that ~0~,... ~0,.(1)~<tp~,... q~,,(1), and 
the SchrSder-Bernstein theorem for dimension OMLs (Loomis, 1955, 
Lemma 13) entails that q~,,.., tp,,,(1)~~o~ . . .  q%(1). �9 

Remarks and Examples 3. 
1. According to Ramsay (1965), Theorem 8.4, there exists a dimen- 

sional equivalence relation on a complete OML L if and only if L satisfies 
the following covering condition: 

if a covers a ^ b, then a v b covers b (1) 

Note that this condition is equivalent to 

if q~,(b) is an atom, then (pb(a) is an atom (2)" 

Now, consider the condition 

if ~0~,... tp,.(1) is an atom, then ( p , . . .  ~o~,(l) is an atom (3) 
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Clearly, (3) implies (2). Conversely, consider an OML L satisfying (2). If b 
is an atom, then, for every a ~ L ,  CPb(a) is b or 0. Therefore, by Lemma 1 and 
(2), ~0,(b) is either an atom or 0. Now suppose that ~0Q,... ~0ao(1) is an atom. 
Applying Lemma 1 and condition (2), we obtain that ~p~,... ~o,~(1) is an 
atom and (3) holds. Hence (1)-(3) are equivalent conditions in OMLs. 

2. In a dimension OML there exist, in general, several dimensional 
equivalence relations. For example, let L be the OML of all closed subspaces 
of a Hilbert space of dimension HI. Define two binary relations ~1 and ~2 
on L as follows: 

a ~ l b . c ~ a  and b have the same Hilbert dimension. 
a ~ 2 b . c ~ a  and b have the same finite Hilbert dimension or a and b are 

of  infinite Hilbertian dimension. 

Clearly, ~1 and ~2 are two different dimensional equivalence relations on 
L. Now, consider a set E of dimensional equivalence relations on an OML L 
and let ~ be the infimum of E in the lattice of all equivalence relations on 
L. The equivalence relation ~ satisfies the axioms A, C, and D' of Loomis 
and, for a l , . . . ,  a, in L, cpa,.., cp~,(1)~ ~0~o... ~0~,(1) holds. 

3. Let E be a Euclidean space (or, more generally, a finite-dimensional 
Hilbert space not necessarily classical). There exists a unique dimensional 
equivalence relation ~ on the OML L of all subspaces of L defined by 
N,-~ M if and only if M and N have the same algebraic dimension. If  f is an 
endomorphism of E which is a composition of orthogonal projections, f =  
PN, . . . . .  PN~, then we have 

f (  E )  = PN, O " �9 "o PN~( E )  = CpN, O " " . o  ~ONk( E )  

"~ ~ONk . . . .  o r = PNk o . .  �9 o P N , ( E )  = f * ( E )  

where f *  denotes the adjoint o f f  In this special case, Theorem 1 means 
rank f = r a n k f * ,  a classical result of linear algebra. 

4. The proof of  Theorem 1 only uses the parallelogram law and the 
two following properties of ~ :  

(i) The relation ~ is transitive and satisfies a weak divisibility property: 
if a ~ b ,  then, for every c<_a, there exists d<_b such that c ~ d .  

(ii) There is a theorem of Schr6der-Bernstein type for ~:  

a ~< b and b ~< a imply a = b 

Every binary relation on an OML which satisfies a parallelogram law 
(i) and (ii) also satisfies a generalized parallelogram law. As an example, 
one can consider equivalence of projections in a Rickart C*-algebra (a 
C*-algebra whose multiplicative *-semigroup is a Baer *-semigroup) (see 
Berberian, 1972, w 12, Corollary, and w 13, Theorem 1). Note that, in general, 
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equivalence of projections is not a dimensional equivalence relation on the 
O M L  of  all projections of  a Rickart C*-algebra (this OM L  is not necessarily 
complete and only N0-additivity of equivalence of projections is guaranteed) 
and therefore Theorem 1 is not available. A similar example is equivalence 
of  projections in a Baer *-ring: every Baer *-ring satisfying the parallelogram 
law (for equivalence of projections) also satisfies the generalized parallelo- 
gram law. There is a little difference between these two examples: as in a 
Rickart C*-algebras right and left projections of  an element are equivalent 
(Ara, 1989), a second proof  of  the generalized parallelogram law for Rickart 
C*-algebras will be obtained in Section 4. On the other hand, it is unknown 
(as far as we know) if a Baer *-ring satisfying the parallelogram law has the 
property that right and left projections of  an element are equivalent. 

5. Let L be a locally modular OML. Then, there exists a dimension ~ 
on L which coincides with strong perspectivity on the set of  all elements x 
such that [0, x] is modular (Ramsay, 1965, Theorem 4.23). Moreover, x 
is finite for ~ if and only if [0, x] is modular. Therefore, if q~a,.., q~.(1) 
is a finite element of  L (this case occurs if one of  a; is finite), then 
~0,,... tp~.(1) and tpa... .  ~0~,(1) are strongly perspective. Since, in a complete 
modular O M L  every element is finite for ~, we have proved: 

Proposi t ion 5. Let al . . . . .  a, be n elements of a complete modular 
OML. The elements q~,,... ~o~,,(1 ) and (0~,... q~-t(1 ) are strongly perspective. 

Question.  Find a common complement of  q % . . .  q~a,,(1) and q~,,... ~0~,(1) 
for n>3 .  

We have obtained good generalizations for Propositions 2 and 3. The 
situation is different for Proposition 1 and position P'. 

Proposi t ion 6. Let a ~ , . . . ,  a, be n elements of  an OM L  L (n>2) .  If  ai 
and aj commute for any ie[2, n - 1 ] ,  j e [ l , n ] ,  then ~0,,... tpa.(1) and 
tpa,,.., tp~,(l) are in position P'. 

P r o o f  Let S be a Baer *-semigroup coordinatizing L. First let us show 
that in S,  (al . . . a , ) (a  . . . .  a l )"  = (al . . .  a , ) (a  . . . .  aO. This follows from the 
equalities 

( a ~ . . . a , ) ( a  . . . .  a , ) " = a , . . ,  a , a , ( a , . . . a l ) "  [ s i n c e a j = a ~ > ( a , . . .  al)"] 

= a , a ~ . . .  a]a, (a  . . . .  a , )"  

= ( a , . . . a , ) ( a  . . . .  a l ) ( a , . . ,  al)"  

= ( a , . . .  a , ) (a  . . . .  a , )  
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Now the latter equality implies that 

[(al . . . a , , ) " (a  . . . .  am)"]" = [(am . . . a , , ) ( a  . . . .  a O " ] "  

= [ ( a l . . .  a , , ) (a  . . . .  a j ) ] "  

= [(a . . . .  a O * ( a . . . ,  al)]" 

= ( a  . . . .  a O "  

In the same way we obtain that 

[ ( a . . . .  a , ) " ( a ,  . . . a . ) " ] "  = (a l  . . . a . ) "  

and Proposition 1 implies that q~.,... r and ~0..... q~.,(1) are in 
position P'. �9 

R e m a r k s  4. (1) If  we choose ai = 1 for any i~[2, n - 1 ] ,  we obtain 
Proposition 1. 

(2) I f  the assumptions of  Proposition 6 hold, then ~0~,... q~..(1)= 
az  A . . .  A a . - 1  A ~O~t(a. ) .  In fact, 

( a  . . . .  a l )  " =  [ ( a . a , ) "  a2 . . . a . _ , ] "  

= [ ( a . a , ) "  A a2 A . . .  A a . - , ] "  

= ( a . a O "  A a2 ^ .  � 9  ^ a . - i  

Making use Of this result, it is easy to prove that ~0 . . . .  q~.(1) and 
~0 . . . .  r are in position P' if one knows that cp.,(a.) and ~o.,,(a~) are in 
position P'. The proof  of  Proposition 6 does not utilize the latter result. 

(3) It  is not possible to weaken the assumptions of  Proposition 6. To 
see this, let us consider Dilworth lattice Dm6 of  Figure 1. Put am = a ,  a i = b ,  

0 

Fig. 1 
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an = c, a i= 1 f o r j ~  1, i, n. Then the only assumption which is not satisfied is 
the eommutativity of ai and an. We have 

~0o~ob(c) = ~0o(b)  = a 

q~ctpb(a) = ~pc(b) = c and c and a are not in position P' 

4. THE CASE OF PROJECTIONS OF A BAER *-RING 

In the OML of all projections of a Baer *-ring there exists a binary 
relation with properties similar to those of a dimensional equivalence relation 
on a dimension OML, the equivalence of projections in the sense of Murray 
and yon Neumann. In particular, this relation is an equivalence relation; it 
satisfies axioms (A) and (B) of Loomis and axiom (C) in the finite case. On 
the other hand, in the general case, there is no relation between perspectivity 
and equivalence of projections. Note that two elements p and q of an OML 
are perspective if and only if p~ and q_L are perspective and that the cor- 
responding result for equivalence of projections is false, in general. 

This section is devoted to obtaining lattice properties of the pair 
{q~a,... ~p~,(1), ~p~,... ~p~,(1)} in an OML L by using the equivalence of 
projections of a Baer *-ring coordinatizing L. 

Let a~ . . . . .  an be n elements of an OML L coordinatized by a Baer 
*-semigroup S. In S, we have 

tp~,... ~0a,,(1)= ( an . . .  al)" 

~0~ . . . ~oo,(1)= ( a l . . .  a n ) ' = ( a  . . . .  al)*" 

From this it follows that ~0~,... r and q ~ . . .  q~,,(1) are equivalent pro- 
jections in any Baer *-semigroup in which the axiom L P ~  R P  is satisfied 
(i.e., for any x of  S, x" and x*"  are equivalent projections). It is known that 
this axiom is stronger than the parallelogram law and it holds in every 
Rickart C*-algebra (Ara, 1989). To interpret the generalized parallelogram 
law for equivalence of projections in the language of lattices, we need to 
consider those Baer *-semigroups in which there is a relation between equiva- 
lence of projections and perspectivity. 

Recall two conditions concerning *-rings introduced by Maeda and 
Holland (1976). 

(*) For any partial isometry w there exists an invertible element c such 
that 1 + cw is invertible. 

(**) For any sequence of orthogonal projections (en)n~N and any pro- 
jection f such that f e ,  f does  not depend on n, we have fen = O. 

These two conditions are satisfied in any unital C*-algebra. 
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Proposition 7. Let L be an OML L coordinatized by a Baer *-ring 
satisfying the parallelogram law (*) and (**). Then, for any al . . . . .  a,  in 
L, there exist elements b~, b2, c~, c2 in L such that 

~p., �9 �9 �9 cp~.(1) =bl vb2, b l l b 2  

tp,, . . . tpal(1)--Cl vc2, ciZc2 

where bf and cj are perspective, i = 1, 2. 

Proof. It is sufficient to apply Lemmas 4 and 6 of Berberian (1984), 
which give a characterization of equivalence of projections by means 
of  perspectivity in a Baer *-ring satisfying the parallelogram law (*) 
and (**). �9 

Remarks and Examples 5. (1) Every yon Neumann algebra, and more 
generally every A W*-algebra (a C*-algebra which is a Baer *-ring), satisfies 
the assumptions of Proposition 7. Note that Proposition 7 is of interest only 
if q~,l.., q~,(1) is not a finite projection. If tpa~... ~pa,(1) is finite, then Theo- 
rem 1 is stronger, since in this case equivalence of projections coincides with 
perspectivity. 

(2) Proposition 7 does not hold in all OMLs. A counterexample can 
be easily obtained in the Dilworth lattice D~6. Indeed, in the notations of 
Figure 1, we have 

C = ~Oc(PdfPa(b • 

b • = ~obq~aq~d(C) 

where c and b • are not perspective. In addition, as b • is an atom, we see 
that Proposition 7 cannot be satisfied. Nevertheless, Proposition 4 suggests 
that there may exist, in any case, a relation involving perspectivity between 
tp~,.., cp~,(1) and q~ . . .  q~(1). 

5. INTERPRETATION IN QUANTUM LOGIC 

Notations are those of the final part of Section 1. 
Consider a physical system ~ and the OML L of all propositions associ- 

ated with ~ .  I f p ~ , . . .  ,p ,  are n propositions, q~p,.., q~r,(1) determines the 
change of the support of a faithful state (i.e., a state with the support 1) 
after application of the operations ~p, . . . . .  ~ p .  Theorem 1 says that if we 
reverse the order of these operations, then the supports of the corresponding 
states are equivalent with respect to any dimension that can be defined on 
L. Hence, the change of support of a state is described in the same way in 
a dimension OML and in a Hilbert space. This result is an argument for the 
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validity of  the axiom of  J. T. Pool describing the change of  support of  a 
state defined on an OML after a measurement. 

A P P E N D I X  

A *-semigroup S is a semigroup equipped with an involution x-+ x* 
satisfying ( x y ) * = y * x * .  An element p of  S is called a projection if 
p =p2 = p , .  

A *-semigroup with 0 is said to be a Baer *-semigroup if, for all a e S ,  
the right ideal {x e S iax = 0} is principal and generated by a projection. This 
projection is unique and denoted a'. The set of  all such projections, called 
closed projections, is denoted by P r o j ( S ) .  A *-ring in which the multiplica- 
tive *-semigroup is a Baer *-semigroup is called a Rickart *-ring and a Baer 
*-ring if its projection lattice is complete. 

As an example of  a Baer *-semigroup we can cite Ae(H), the semigroup 
of  all bounded operators of  a Hilbert space H, and more generally any 
multiplicative *-semigroup of a von Neumann algebra. Note that in Aa(H) 
we have 

. . . .  *' - P • a*"  = P r ~  a' : e k e r  a ,  a - -  P ( k e r  a) •  u - -  ( Im a)  , 

For  any Baer *-semigroup S, the binary relation < defined by a < b if 
ab = a is an order relation on the set of all projections of  S, and equipped 
with the restriction of  the operation ' as an orthocomplementation, Proj(S) 
is an orthomodular  lattice. 

For  the converse, a lemma containing reminiscences from Foulis (1960) 
and the theory of  residuated mappings is useful. 

Lemma .41. In every OML L the following properties hold: 
(a) ep~, . . . . .  cpx.(z)<_ac~z%[q)x, ~" .~_o (px,(a• • 
(b) q~x,O o tpxp([q~x, . . . . .  ~px,(a )] ) < a .  
(c) q~xp ~ 1 7 6  ~Px,(a)=Min{zeLl~px, ~ " " " ~ Cpxp(Z)>a}. 
(d) ~p,, o- �9 �9 o ~0a. o ~Px, . . . . .  tp~ = 0 is equivalent to r o. �9 �9 o cx~ = 

~Pa o epx, . . . .  o ~0x~ w i t h  d =  (~.. . . . .  o ~ % ( I ) )  •  

Proof. (a) For  p =  1, an easy calculation shows that x~ A (x~ V z ) < a  if 
and only if z < x ~ - v  (xj ^ a ) .  Suppose (a) for an integer p:  

q~x, . . . . .  ~0x. o ~p~p§162 r . . . . .  r _< [r177 • 

(by using the case p = 1) 

r <[~ox~+, . . . .  o q~x2 o cpx,(a• 

(by making use of  the hypothesis) 
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(b) F o r p  = 1, q ~ x l [ q T ~ ( a • 1 7 7  ^ a < _ a .  Assume (b) for  an integer p :  

r o . . .  o ~%+l([r o- . .  o ~0x,(a• • 

= ~ox, . . . .  o q % ( x p + ,  ^ [q~, . . . . .  q~x,(a• • ( ca sep  = 1) 

<~0x, . . . . .  ~%([q~x, o . . .  o ~%(ai)]  • _<a 

by  mak ing  use o f  the hypothesis  and as ~% . . . .  o q~, is increasing 

(c) F r o m  (a) and (b) we infer 

[~Ox, . . . .  o ~ % ( a • 1 7 7  M a x { z e L I  q~x, . . . .  o ~%(z) < a }  

which is equivalent  to (c) 
(d) I f  q~ . . . .  o ~p~. o tpxl o �9 �9 �9 o tpx~ = 0, then, for  every z, 

q~o, . . . .  o ~0~.  o ~ . ~ ,  o �9 �9 �9 o C x ~ ( Z )  = 0 

and f rom (a) we infer 

~ , x ,  o - -  �9 o ~ % ( z ) _ _ _  ( ~ 0 . o  o .  �9 �9 o q ~ o , ( l ) ) ~ : d  

Hence,  tpd ~ tp~, o "  �9 �9 o epxp(Z) = tpx~ o"  " " o r and tpd o tp~, o" �9 �9 o ~ = 
(Ox t o �9 �9 �9 o tp~, holds. The  p r o o f  of  the converse is similar. �9 

Par t  (c) o f  L e m m a  3 allows us to define an involut ion x ~ x* on the 
set St. = {~p~, . . . . .  ( o a , , [ a i e L }  by 

(~0., . . . . .  r = ~0.. o" �9 �9 o ~0., 

a s  

implies 

tp,,,, o . . . .  tp~, = tpb,. ~ " " " o q~b, 

Clearly, SL is a *-semigroups,  every Sasaki project ion o f  L is a project ion 
o f  SL, and  par t  (d) o f  the l emma  shows that,  for  an element rpa, . . . . .  q~o~ 
o f  SL, we have 

{ x ~ S t - l  q,~, . . . . .  q~a~ o x =  O} = ~pdSt- 

with d = ( ~ p a o ' ' ' o  ~p~,(1)) • Hence,  SL is a Baer *-semigroup and,  as 
(~pa• •  a, the closed project ions o f  St- are the Sasaki project ions of  L. 
Finally,  it is easy to prove  that  the mapp ing  ~ o f  L into Proj(St-) defined 
by ~ P ( x ) = ~ p x  satisfies x < _ y  if  and only if ~ ( x ) < ( I ) ( y )  [i.e., ~ ( x ) o  ~ ( y ) =  
(1)(x)]. Since ~ ( x  •  = ~px •  ~p ' ,  �9 is an i somorphism of  the O M L  L into 
Proj(SL) which is an o r t h o m o d u l a r  lattice. 
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Some elementary properties o f  Baer *-semigroups used in the proofs  o f  
this paper  are collected in the following lemma. 

L e m m a  A2.  Le t  a and b be elements o f  a Baer *-semigroup S and p, q, 
Pl ,  �9 �9 �9 P ,  be closed projections o f  S. 

(a) aa' = O, a'a* = O, ap = 0 is equivalent to p < a', aa" = a, and a"a* = a. 

(b) p q = q p  if and only i f p  and q commute  in the O M L  Proj (S) .  
(c) I f p q = q p ;  then p q E P r o j ( S )  and p q = p  ^ q. 

(d) (ab)" = (a"b)" and (pq)"  = q~q(p). 

(e) ( a * a ) ' = a ' .  
(f)  ( p , . . . p , ) " = q g p ,  o . . .  o ~pp.(1). 

Proof .  For  (a ) - (d) ,  see Foulis (1963) or  Maeda  (1970). 
(e) I f  ax  = 0 ,  then a*ax  = 0 holds. Conversely, a * a x =  0 implies a x =  

a* 'ax  and, as a*'a = 0, we have a x  = 0 and thus a ' =  (a 'a ) ' .  

(f)  By (d), we have 

(p  . . . .  p , )"  = ( (p  . . . .  p2)"p,) " =  r ( (p  . . . .  p2)") 

= q~p,( ( (pn . . ,  p3)"p2)") = ~op, o q~p2((P,. . ,  p3) ' )  

. . . . .  ~ o , , , o . . . o  ~0.,,(1) �9 
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